Source code for src.final.theory_simulation.plot_finite_sample

"""
The module which created Figure 2 of the final paper can be found under
*src.final.theory_simulation.plot_finite_sample*. The calculations for this
have been performed in the module *calc_finite_sample*, which can be found under
*src.analysis.theory_simulation* and has been described in :ref:`analysis`.
The *.pickle* files, which were created by the module described above and which are
used here, where saved under *bld.out.analysis.theory_simulation*.

"""
import pickle
import json
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

from bld.project_paths import project_paths_join as ppj


[docs]def plot_finite_sample(settings_plotting, output_finite_sample): """ A function that creates figure 5 in the final paper. Parameters ---------- settings_plotting: Dictionary as described in :ref:`model_specs` The dictionary contains all plotting specifications that are shared across various modules. output_finite_sample: Dictionary as defined by *calc_finite_sample* in *src.analysis.theory_simulation* The dictionary that contains the simulation results for bagging the indicator function for different sample sizes. """ plt.style.use([settings_plotting['style']]) fig = plt.figure(figsize=settings_plotting['figsize']['finite_sample']) x_grid = output_finite_sample['x_range'] # Pop x_grid as it makes the plotting easier. output_finite_sample.pop('x_range', None) # Loop over the keys (different sample sizes) to plot each. for index, key in enumerate(output_finite_sample.keys()): axis = fig.add_subplot(2, 2, index + 1) # Set ylim to make the effect of convergence more clear. axis.set_ylim([0, 0.5]) axis.plot( x_grid, output_finite_sample[key]['mse_unbagged'], color=settings_plotting['colors']['trees'], label=r'$\hat{\theta}_{n}(x)$' ) axis.plot( x_grid, output_finite_sample[key]['mse_bagging'], color=settings_plotting['colors']['bagging'], label=r'$\hat{\theta}_{n;B}(x)$' ) axis.set_xlabel('$x$') axis.set_ylabel('$MSE$') axis.set_title('$n=' + str(key) + '$') handles_fig, labels_fig = axis.get_legend_handles_labels() plt.legend( ncol=3, loc='lower left', bbox_to_anchor=(-0.40, -0.27), frameon=True, fontsize=12, handles=handles_fig, labels=labels_fig ) fig.tight_layout(pad=0.4, w_pad=1, h_pad=2.5) fig.savefig( ppj("OUT_FIGURES_THEORY", "plot_finite_sample.pdf"), bbox_inches='tight' )
if __name__ == '__main__': with open(ppj("IN_MODEL_SPECS", "settings_plotting.json")) as f: SETTINGS_PLOTTING_IMPORTED = json.load(f) with open(ppj("OUT_ANALYSIS_THEORY", "output_finite_sample.pickle"), "rb") as f: OUTPUT_FINITE_SAMPLE_IMPORTED = pickle.load(f) plot_finite_sample( SETTINGS_PLOTTING_IMPORTED, OUTPUT_FINITE_SAMPLE_IMPORTED )