Source code for src.final.theory_simulation.plot_toy_example

"""
The module which created Figure 2 of the final paper can be found under
*src.final.theory_simulation.plot_toy_example*. The calculations for this
have been performed in the module *calc_toy_example*, which can be found under
*src.analysis.theory_simulation* and has been described in :ref:`analysis`.
The *.pickle* files, which were created by the module described above and which are
used here, where saved under *bld.out.analysis.theory_simulation*.

"""
import json
import pickle
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

from bld.project_paths import project_paths_join as ppj


[docs]def plot_toy_example(settings_plotting, output_toy_example): """ A function that creates figure 3 in the final paper. Parameters ---------- settings_plotting: Dictionary as described in :ref:`model_specs` The dictionary contains all plotting specifications that are shared across various modules. output_toy_example: Dictionary as defined by *calc_toy_example* in *src.analysis.theory_simulation* The dictionary that contains the calculation results for the bagged and unbagged indicator function. """ plt.style.use([settings_plotting['style']]) fig, axis = ( plt.subplots( figsize=settings_plotting['figsize']['theory'], ncols=3 ) ) # Create the Variance Subplot with index 0. axis[0].plot( output_toy_example['c_range'], output_toy_example['bagged']['variance'], color=settings_plotting['colors']['bagging'] ) axis[0].plot( output_toy_example['c_range'], output_toy_example['unbagged']['variance'], color=settings_plotting['colors']['trees'] ) # Set the x-axis ticks to make it more readable. axis[0].xaxis.set_ticks(np.arange(-4, 4 + 1, 2)) axis[0].set_title('$Variance$') axis[0].set_xlabel('$c$') # Create the Bias Subplot with index 1. axis[1].plot( output_toy_example['c_range'], output_toy_example['bagged']['bias'], label=r'$\hat{\theta}_{n;B}(x_{n}(c))$', color=settings_plotting['colors']['bagging'] ) axis[1].plot( output_toy_example['c_range'], output_toy_example['unbagged']['bias'], label=r'$\hat{\theta}_{n}(x_{n}(c))$', color=settings_plotting['colors']['trees'] ) # Set the x-axis ticks to make it more readable. axis[1].xaxis.set_ticks(np.arange(-4, 4 + 1, 2)) axis[1].set_title('$Bias^{2}$') axis[1].set_xlabel('$c$') handles_fig, labels_fig = axis[1].get_legend_handles_labels() # AMSE Subplot amse_bagging = ( np.add( output_toy_example['bagged']['bias'], output_toy_example['bagged']['variance'] ) ) axis[2].plot( output_toy_example['c_range'], amse_bagging, color=settings_plotting['colors']['bagging'] ) # Keep in mind that the unbagged predictor is unbiased. axis[2].plot( output_toy_example['c_range'], output_toy_example['unbagged']['variance'], color=settings_plotting['colors']['trees'] ) # Set the x-axis ticks to make it more readable axis[2].xaxis.set_ticks(np.arange(-4, 4 + 1, 2)) axis[2].set_title('$AMSE$') axis[2].set_xlabel('$c$') plt.legend( ncol=4, loc='lower left', bbox_to_anchor=(-1.25, -0.4), frameon=True, fontsize=12, handles=handles_fig, labels=labels_fig ) fig.tight_layout(pad=0.4, w_pad=1, h_pad=2.5) fig.savefig( ppj("OUT_FIGURES_THEORY", "plot_toy_example.pdf"), bbox_inches='tight' )
if __name__ == '__main__': with open(ppj("IN_MODEL_SPECS", "settings_plotting.json")) as f: SETTINGS_PLOTTING_IMPORTED = json.load(f) with open(ppj("OUT_ANALYSIS_THEORY", "output_toy_example.pickle"), "rb") as f: OUTPUT_TOY_EXAMPLE_IMPORTED = pickle.load(f) plot_toy_example(SETTINGS_PLOTTING_IMPORTED, OUTPUT_TOY_EXAMPLE_IMPORTED)